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fitting the data at larger —¢. The results'® are shown in
Fig. 4 along with some representative data points.

Observation of rapid ¢ variation in the differential
cross section for $p charge exchange with —{<0.02
and/or verification of the energy dependence of the
rapidly varying contribution for —¢<0.02 in np charge
exchange would be important confirmation of the pres-
ence of long-range OPE in nucleon-nucleon collisions.
Note that we have assumed in the foregoing that the
pion is “elementary”; i.e., the amplitudes f and f,
decrease with increasing energy like (1). If the pion is,
on the other hand, “Reggeized,”’® these amplitudes
would have a slightly different energy dependence. This
effect is expected to be small.1®

18 J'or more accurate estimations, the pp elastic scattering data
should be used.

19 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41
(1962).
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It will be interesting to learn more about the energy
dependence of the structure of these charge-exchange
peaks. Assuming our model to be correct, we expect the
magnitudes of the parameters K, Ky, and K4; to de-
crease at high energies like, e.g., some power of energy.?
We do not know whether they obey the same or dif-
ferent power laws.

We would like to take this opportunity to thank
C.N. Yang and R. P. Feynman for stimulating and in-
formative discussions, and M. E. Parkinson for help
with computations.

2 The phases of these parameters may also be measured (see,
e.g., Refs. 14 and 16). A. A. Lozunov, N. van Hieu, and I. T.
Todorov [Ann. Phys. (N.Y.) 31, 203 (1965)7] showed that in the
asymptotic region (s —o for fixed #), analyticity and crossing
symmetry of scattering amplitudes relate their phases to their
energy dependence. It would be interesting to compare such
relations with experimental data. M. LeBellac [Nuovo Cimento,
42, 443 (1966); CERN report (unpublished)] discusses such a
comparison for wp scattering.
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Pion-Pion Scattering in a K-Matrix Model Incorporating
Crossing Symmetry*
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A crossing-symmetric generalization of the K-matrix formalism is developed and used to construct a model
for w-m scattering. The full amplitude satisfies elastic unitarity in the s channel and has the correct singularity
structure at the elastic thresholds in the ¢ and # channels. The two parameters present in the model are
determined by requiring approximate satisfaction of the crossing relations in the neighborhood of the sym-
metry point. The resulting p-wave phase shift exhibits a resonance with mass about 800 MeV and width
about 250 MeV. The f?is not reproduced. The s-wave scattering lengths in the =0 and I =2 channels are
(@o,a2) = (—0.67,—0.30) and the effective Chew-Mandelstam coupling constant is found to be 0.18.

1. INTRODUCTION

T has been known for many years that in potential
theory the product ¢ cots, considered as a function
of energy, is regular at threshold and that consequently
a power-series expansion in ¢? is valid there. This fact
has frequently enabled useful parametrizations of scat-
tering data in the form of the scattering-length and
effective-range approximations.!
It is also well known that this result may be thought
of from a somewhat different point of view, in which
use is made of the K-matrix formalism. The char-

* The research reported in this document has been sponsored
in part by the U. S. Air Force Office of Scientific Research,
Office of Aerospace Research, under Grant No. AF EOAR 63-79
with the European Office of Aerospace Research, U. S. Air Force.

1 Now at the Department of Physics, University of Toronto,
Toronto, Canada.

1 R. H. Dalitz, Strange Particles and Strong Interactions (Oxford
University Press, New York, 1962).

acteristic feature of the K matrix, defined by
143K
S=

S 1.1

hK’ (1.1)
lies in the fact that its Hermiticity is a necessary and
sufficient condition for the S matrix to be unitary. To
obtain further properties of K the scattering process
under consideration should be specified in some detail.
Thus we consider the elastic scattering of two identical
particles of unit mass, with charge and spin both zero;
the usual Mandelstam variables are defined as shown in
Fig. 1. Taking two-particle matrix elements of K in the

P P
—
R A

It

F16. 1. Elastic pion-pion scattering.
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energy region below the first inelastic threshold gives,
after factoring out the energy-momentum-conserving
é functions, an analytic function K (s,f). This K ampli-
tude is real in the elastic-scattering region of the s
channel as a result of the unitarity requirement that
the matrix K be Hermitian. Since the K amplitude is
also real in the unphysical energy region below threshold
it follows that K(s,f) must be regular at the elastic
threshold s=4. (The details of this argument may be
found in several places in the literature.*?) The normal
threshold singularity in the scattering amplitude may
thus be said to have been “extracted.”

The partial-wave K amplitudes, £:(s), will evidently
also be regular at s=4 and consequently the normal
threshold singularity in the scattering partial waves
a,(s) may be explicitly displayed. Thus when a partial-
wave decomposition of (1.1) is made one obtains

Gt (1.20)
ay(s)=——— , 1.2a
—Liwp(s)ki(s)
where
4 ¢ sing; (s)
a(s)=- ——-—— (1.2b)
T p(s)
and
s—4\1/2
0= (120
s

explicitly revealing the square-root nature of the normal
threshold branch point in a;(s).

The fact that k.(s) is regular at s=4 means that it is
a much more slowly varying function than p(s), at
least for s very near threshold. In the hope that this
situation persists for at least a short distance above
threshold it is natural to try approximating k.(s) by a
constant or a linear function of s. The usual scattering-
length and effective-range approximations are in fact
recovered by making these approximations on the func-
tion £;1(s), since by (1.2)

ki=p cotd. (1.3)

In this paper this extraction-of-singularities approach
is extended to include the elastic thresholds in each of
the three channels of a two-particle scattering ampli-
tude, in the hope that such a crossing-symmetric calcu-
lation might prove more fruitful than the simple direct-
channel analysis. The possibility that such an approach
could form the basis of a calculational program within
the framework of S-matrix theory was suggested by
Landshoff and Olive.? A similar program in field theory
has been discussed by Taylor.® Here the formalism will
be applied to the case of -7 scattering, where previous
calculations have indicated that the inclusion of only

2 W. Zimmermann, Nuovo Cimento 21, 249 (1961).

3R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, The Awndalytic S Mairix (Cambridge University Press,
Cambridge, England, 1966).

1P, V. Landshoff and D. 1. Olive, J. Math. Phys. 7, 1464 (1966).

5 J. G. Taylor, Nuovo Cimento Suppl. 1, 857 (1963).
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elastic unitarity may be sufficient to describe the low-
energy behavior for a considerable distance above
threshold. It is found that the complete 77 amplitude
involves two parameters which may be determined by
the requirement that crossing symmetry be satisfied in
the neighborhood of the symmetry point.

In the next section the basic equations of the for-
malism are introduced and in Sec. 3 a power-series
solution is developed. An approximate amplitude is
obtained by selecting a particular (infinite) subset of
terms of the expansion. In Sec. 4 the method is general-
ized to include isospin, in order to deal with - scatter-
ing. The numerical determination of the parameters is
discussed in detail in Sec. 5. Finally, in Sec. 6 the
results for the low partial-wave phase shifts in each
isospin channel are presented and discussed.

2. THE BASIC EQUATIONS

When the connected part of the S matrix, 7, is
introduced in the usual way (S=1+4:7), (1.1) may be
written in the form

T=K+3%iTK, (2.1)
or, in bubble notation, as shown in Fig. 2. This equation
may be used to prove directly, with the assistance of
the unitarity condition (shown diagrammatically in
Fig. 3), that the K amplitude is lacking the branch
point at s=4.

Our convention for the bubbles and for the integra-
tion over intermediate states may be illustrated by
writing (2.1) out in full:

T (pr,po,psps) =K (p1,p2; ps,ps)

%i/d4i’5d4i’6 T(Pl;Pz’PbaP6)5+ (p52_ 1)5-1- (Pﬁ2_' 1)
X6® (prtpa— ps— po) K (ps,ps5 p3,p4) -

The unitarity-type integral in this equation reduces, by
using the § functions, to an angular integration, so that
the equation becomes

T(s,) =K (5,))+ fip (s) / 40 T(s./)K (5,7,

where t'= (p1— p5)%, t'= (ps— ps)?, and the integration
is over the angular orientation of the intermediate
momentum ps in the center-of-mass frame.

The “plus bubble” in the unitarity condition (Fig. 3)
is just the physical sheet amplitude 7" while the “minus
bubble” represents the function obtained from T" by

T16. 2. The bubble notation version of the defining equation
for the K matrix (2.1). The square blob in the figure corresponds
to K.
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SO O=EO=0=

Fic. 3. The elastic-unitarity condition. The plus and minus
bubbles are defined in the text.

continuing s counter-clockwise around the branch point
at s=4.

If the details of the proof of the regularity of K (s,?)
at s=4 are examined (see, for example, Ref. 3, p. 231),
it will be observed that the essential property of the
phase-space factor in the unitarity-type integral in
(2.1) is its discontinuity of 2p(s) across the elastic
unitarity cut and that any other function with this
property would serve as well.5 There is, therefore, a
large class of possible “K amplitudes” which may be
generated by using different phase-space factors in the
defining Eq. (2.1), the conventional K being obtained
when simply p(s) is used. This freedom in the choice of
phase-space factor makes it possible to choose one
without the awkward kinematic singularity at s=0
which is possessed by p(s) itself. The simplest way of
obtaining a function with the desired properties is by
evaluating the integral

(=) o)
m.ﬁw@ugw—w

where the subtraction is necessary to obtain a con-
vergent integral.

It should be noted, however, that the use of this
modified phase-space factor in defining a new K(s,?)
does not completely remove the singularity in K at
s=0. There is still a singularity there due to a pinch
of the integration contour in (2.1) by the normal
threshold singularities in the momentum transfer vari-
ables in 7" and K. What is more, it seems likely that
K(s,t), no matter what is used for the phase-space
factor, will have a natural boundary along the negative
real s axis for the same reason that this probably occurs
in the unphysical sheet amplitude.” We shall reserve
until later the question of how these various singularities
are to be taken into account in a practical calculation.

Returning to the modified phase-space factor F, the
integral given in (2.2) is not the most general function
satisfying our requirements, but since any others would
require the introduction of further parameters we shall
use (2.2). Evaluating the integral gives

=F(s,5), (2.2)

F(s,50)=G(s)—G(50);
G()=p(s)+iR(S),

1 14+p(s
R(s)=—p(s) In ”?,

T 1—p(s

(2.3)

¢ The author would like to thank Dr. P. V. Landshoff for this
observation.
"P. G. Freund and R. Karplus, Nuovo Cimento 21, 519 (1961).
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where the principal branch of the logarithm is to be
taken on the physical sheet [so that R(s)>0 for s>4].
Note that G(s) is pure imaginary for s<4; s, will there-
fore be restricted to be <4 so that the new K will still
be real above threshold. The equation defining the
modified K amplitude should properly be written

F(s,50)
1

p(s)

T=K' TK',

but we shall henceforth drop the prime on K’ and also
absorb the factor F/p into the convention for the inter-
mediate lines whenever a unitarity-type integral occurs.
The new relation between the partial waves [instead of

(1.2)] will be
ki(s)

1—2ixF (s5,50) ki (s) @4

ai(s)=

It is interesting to note that this modified K-matrix
formalism bears a much closer resemblance to the N/D
method than does the usual K matrix. For example, if
a “scattering-length’ approximation is made with the
modified K matrix, the result is precisely the Chew-
Mandelstam effective-range formula® which is usually
derived by taking N to be a constant and using the
determinantal approximation for D.

It was first pointed out by Zimmermann? that (2.1)
could be extended to define a function which would
have the elastic normal thresholds in each of the three
channels removed. One simply defines a function A(s,#,%)
by Fig. 4 and it is easy to see, by using the fact that
T(s,tm) is a totally symmetric function of its three
variables, that A(s,f,%) is regular at s=4, t=4, and u=4
and is also, of course, totally symmetric itself. Although
Zimmermann was using the ordinary K matrix the
situation remains unchanged when the modified phase-
space factor is used. An equation like Fig. 4 has also
been introduced and discussed by Taylor® within the
context of field theory, but there the intermediate lines
are off the mass shell.

We have already pointed out that K(s,f), while
regular at s=4, is singular at s=0 due to a pinch of the
integration contour in the integral in (2.1). Conse-

I
ZQ: =AGtws i):

—3
—4

N e

I T [

2 4 2 3

F16. 4. Definition of the symmetrically reduced amplitude X (s,t,%).

8 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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Lis,t) = “():E:}:

quently, by Fig. 4, M(s,t,#) must have branch points at
s=0, t=0, and #=0, with just that structure required
to make 7 regular at these points; A and K are both
finite at these singularities.

It is the equation in Fig. 4 which forms the basis of
our approximate calculation of the scattering amplitude.
It will be convenient to cast it into a somewhat different
form, with the help of (2.1). Introducing the function
L(s,t) defined in Fig. 5, Figs. 2 and 4 may be written
in the form

T(s,)=K (s,t)+%iL(s,0), (2.5a)
T (s,6)=N\(s,t,0) +3iLL(s,)+L(t,w)+L(u,5)]. (2.5b)

Since T'(s,t,u) is a totally symmetric function of its
three variables and K(s,f,%) is symmetric in ¢ and #,
it follows that L(s,t,u) has the same symmetry as K.
Hence, by permuting the variables in (2.5a) twice,
adding to (2.5a), and comparing with (2.5b), we find

T(S,t,%) = —%)\(s,t,u)
+3[K () +Ktu)+K (u,s)].  (2.6)

Since it is difficult to take the singularities at s=0,
t=0, and =0 in X\ and K explicitly into account and
since those in X must overlap those in each K in such a
way as to annihilate one another when 7" is computed
according to (2.6), we shall make the simplifying as-
sumption that these singularities may be neglected, for
the purposes of an approximate calculation of the
amplitude, in both X\ and K. The cross-channel normal
thresholds in K(s,) (at t=4 and #=4) are of course
retained and the scattering amplitude obtained from
(2.6) will thus have the correct elastic branch points
in each channel.

Proceeding, then, on the assumption that the singu-
larities at the origin in A(s,f,%) may be ignored, provided
the K amplitude is suitably modified, the only remaining
singularities in this function are those due to the in-
elastic thresholds at s=16, etc. In the hope that low-
energy -7 scattering is dominated by elastic effects for
a considerable distance above threshold, we shall not
take the inelastic thresholds into account here. Thus, in
effect, we are assuming that it is reasonable to take
\(s,t,) to be an entire function of its variables and
furthermore, in the spirit of K-matrix calculations gen-
erally, we shall take X to be a constant. Since A(s,t,u) is
rigorously (i.e., before neglecting any singularities) real
in the neighborhood of the symmetry point, and since
we are approximating it by a singularity-free function,
the constant \ will be taken to be real. We observe that
in a Taylor-series expansion of \(s,#,%) about some point
(the symmetry point, say), the first nonconstant terms
involve the second derivatives of X since the symmetry
of \ requires any linear terms to combine into a con-
stant (since s+i+wu=4). This provides some support

F16. 5. Definition of the
function L(s,?).
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for the approximation of A by a constant. The main
test of the usefulness of this assumption, however, must
lie in the physical significance of its consequences. Since
the last three terms on the right-hand side in Fig. 4
correspond, in some sense, to the contributions to T
from diagrams with a two-particle cut in at least one
of the three channels, A evidently represents the con-
tribution of all other diagrams. Thus, taking a simple
form of N\, such as a constant, effectively means that
only the two-particle structure is being considered.>s In
this sense our basic equations roughly correspond to the
strip-approximation equations.®:

If one is interested in decay processes, for which the
physical region is s, {, and #>4 (considering s, £, and %
as the subenergies in a three-body final state), the
approximation of constant A may be reasonable without
even introducing a modified phase-space factor. This
situation has been investigated by Taha.!

3. THE POWER-SERIES SOLUTION

Having thus decided to make A\ a constant we may
now consider Fig. 4 and the defining equation for the K
matrix (2.1) as a pair of coupled integral equations for
the scattering amplitude. The method we have adopted
in order to obtain an approximate solution to these
equations is to make a power-series expansion in the
parameter A and to sum as many terms (an infinite
subset, as it turns out) in the resulting expansion as it
appears feasible to handle. Once an approximate solu-
tion of the equations for K(s,f) is obtained by this
“perturbation” method we then have the option of
determining 7" from K, either by (2.1), giving an ampli-
tude satisfying elastic unitarity in the direct channel,
or by (2.6), which clearly yields a crossing-symmetric
amplitude. We regard it as more important to have
unitarity satisfied in the elastic region and consequently
(2.1) will be used. The extent to which the resulting
amplitude satisfies crossing symmetry will naturally
depend on the extent to which the approximations made
in obtaining K are valid. The way in which the two
parameters A and so (which are so far arbitrary) may
then be used to minimize the violation of crossing will
be discussed in more detail in Sec. 5.

The actual construction of the power-series solution
will be facilitated by decoupling the two equations (2.1)
and (2.5b) to give a single nonlinear integral equation
for K only. This may be done by simply inserting (2.6)
into (2.1), but in order to express the resulting equation
in a convenient form we shall introduce an algebraic
notation to denote the “composition” of two functions
in a unitarity-type integral. Thus we define

K(stu)=K;,
K(tu,s)=K,,
K(us,)=Kj,

9 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).
10 M, O. Taha, Nuovo Cimento 42, 201 (1966).
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and also define K;0 K; to mean the composition of K;
and K;, with the composition taking place in the s;
channel. (We treat s, 53, and s3 as interchangeable with
s, ¢, and ».) This is illustrated in Fig. 6.

In this notation (2.1) reads

T1= K1+%1,T1 o Kl y
and (2.6) becomes

Combining these equations gives
K== 2 Ki—3i(—i 3 2 K)o Ky
=— 35 2 Kit-3inFNK ©
—112:K;0K;y,
where F;=F(s;,50) and K, is the Ith partial-wave

projection, in the s; channel, of K;. We now insert the
power-series expansion

(3.1)

K=Y \"K,.,

n=l1

(3.2)

and separate out the coefficients of A"
Kl,n= —%an,l-l"% Z Ici,n“}—%iﬂ'FlKl,n—l(O)
z ](¢,p0 Kl’q.

ipq
pta=n

(3.3)

It is now straightforward to solve this equation suc-
cessively to any desired order. Thus one finds for the
first three orders:

I<1’1= 1,
Kl,gziiT(FQ“'—Fg),
K1’3= ———11—67r2|:(F2)2+ (F3>2+4F2F2(0>+4F3F3(0)].

In the expression for K 3, the function £ is the s-wave
projection of F(t,s0), i.e.,

(3.4)

1 /0
FO (s50)=—-| dtF(i,50),

S—4%) 4—s

(3.5)

and the subscript on F©® indicates as usual the vari-
able on which F©® depends. Since G(f) has a branch
point at ¢=4 the function F©®(s) will have a branch
point at s=0, an end-point singularity of the integral
in (3.5), and consequently the third-order K matrix
K5 has branch points at =0 and #=0, by (3.4).

It was to be expected that singularities of this type
would arise in K, but now we see that when 7' is calcu-
lated by using (2.6) it will retain these undesirable

Ko kj == k| K =%

Fic. 6. A diagram illustrating the meaning of the “composition”
of two amplitudes as used in the text.

PION-PION SCATTERING

IN K-MATRIX MODEL 1711

F16. 7. A typical cross-channel chain diagram. ¢
The internal lines are on the mass shell but the
use of the modified phase-space factor makes
the amplitude for the graph the same as if the
lines had been off shell.

singularities. In an exact treatment the function \(s,t,u)
would have been singular in just such a way as to pre-
serve the known cut-plane analyticity of 7', as we have
previously discussed. In accordance with the program
outlined in the previous section we now separate the
power-series expansion for K into two parts, retaining
only that part with the desirable analytic structure; the
other part we imagine as absorbed into . This division
is, of course, somewhat arbitrary, but a natural separa-
tion does arise from the power-series solution, in which
all those terms which are free of the singularities at
{=0 and #=0 consist of the chain diagrams (Fig. 7)
and are readily summed. These chains evidently form a
geometric progression, with ratio zéw\F, and thus our
approximate expansion for K is simply

K (s,6,) =\[1— Lim\F (1) T
N1 —im\F () A=\

It is this approximate solution for K (appropriately
generalized to include isospin) on which we base our
m-m scattering model. In the next section the formulas
obtained here are extended to describe particles with
isospin 1.

(3.6)

4. INSERTION OF ISOSPIN INTO THE
BASIC EQUATIONS

We define a K amplitude for each isospin channel in
the following way:

T1=K1—{—%7:TIOK1, I=0, 1,2. (41)
Defining Ly(s,t,) as in Sec. 3, (4.1) becomes
Tr(s,t,u)=Kr(s,t,u)+51L1(s,t,) . (4.2)

We wish to find the analog in the isovector case of
the crossing-symmetric two-particle structure equation
(Fig. 4). This may be accomplished by defining the
completely reduced amplitude Az (s,t,u) as

A1 (s,tu)=Tr(s,tn)
— L[ Li(s,tu)+L1 (tu,s)+ L (u,s,8)]. (4.3)
The new functions Ly, Ly’ will be chosen so that A7
will be lacking the two-particle cuts in the ¢ and #
channels, respectively.
Since the scattering amplitude 7'y satisfies the crossing
relations
TI (S)t)u) = ﬁIJTJ (t,S,M)
= ('— 1)J61JTJ(t>u7s) ’

(4.4)
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where (8 is the well-known 77 crossing matrix
1/3 1 5/3

8=|1/3 1/2 —5/6} ,

1/3 —1/2 1/6

it is clear that the #-channel cut in Ar(s,f,») will be
removed by the choice

Lll(t)u'as) = (_ 1)JBI-7LJ(t)u:S) P

(4.5)

(4.6)
for then
disceAr(s,t,u)
=disc,Tr(s,t,u) —%¢ disc.Ly (¢,u,s)
=[T1(s, t+ie, w)—T1(s, t—ie, u)]
—Li[ Ly (t+ie, u,s)— Ly’ t—ie, u,5) ]
= (—' 1)Jﬁ[J[TJ (t+’i€, M,S)— Ty (t*-ie, M,S)]
—Yi[ LY (t+ie, u,s)— Ly (t—1e, u,5) ]
=3{(—1)7B8rs[Ls(t+ie, u,s)— Ly(t—ie, u,5)]
—[Ly (t+ie, u,s)— Ly (t—1e, u,5) ]}
=0.

4.7

Similarly, Ly is chosen to satisfy
LI" (u)s)t) = ("— 1)J18IJLJ, (M:S:t)
= (-‘ 1) J+K61J}8JKLK (M,S,t) .
Thus we have finally
N (s,tu) = Tr(s,t,u) — %[ Ly (s,t,u)+ (—1)7BrsLs(t,1,5)
+ (= 1) 5B BrxLr(u,s,t)]. (4.9)

It is straightforward to deduce from (4.9) that A\;
satisfies the same crossing relations as the scattering
amplitude, i.e.,

)\I(S,l,%)= (=1)7Brans(tm,s) . (4.10)

Now, by application of (4.2) and its crossed versions;
we may write

T1(s,t0) =N (s,t,0)+T1(s,t,m) — K1 (s,t,u)
+ (_ l)JABIJ[TJ(t)MyS)_KJ(t:u;s)]

(4.8)

+ (=081 [Ts(u,s,t)— K s(u,s,8)], (411)
where use has also been made of the relation
(—1)7*+EBrsBrx= (—1)Brx .- (4.12)

With the aid of

(—1)JﬁIJTJ(t:u,S)= (—1)IﬁIJTJ(u9S)t) (413)
= T[(S,f,u) ’
(4.11) becomes

T1(s,tm) = —ENr(s,2,0)+3[ K1 (s,t0)
+ (-" 1)JﬁIJKJ(t;u,5)+ ('_' I)IﬂIJKJ(u’;S:t)] 1] (414)

analogous to (3.3).

As a preliminary to developing the “perturbation
theory” formalism we note that the requirement that
Ar(s,tu) satisfy (4.10) reduces the number of inde-
pendent parameters, when Az is chosen to be constant
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(for each I), from three to one. This follows because
(4.10), for A; independent of s, ¢, and #, requires the
three-vector Ar to be an eigenvector of the matrix
(—1)78rs with eigenvalue unity. This eigenvector is

proportional to
5
(0} =(1);
2

A=z

(4.15)

thus we choose
(4.16)

It is interesting to note that if the subtraction point
5o in the phase-space factor F is chosen to be § it then
follows that

Tr($,5,8)=Ki1(5:55) =, (4.17)
so that in this case our \ would be the conventional one,
frequently called the “renormalized coupling constant”
(because of differences in normalization conventions
this A is in fact equal to —4/r times the Chew-
Mandelstam \). However, we do not wish to fix so
arbitrarily, but prefer to use it, together with A, to
minimize the violation of crossing by our approximate
amplitude, as described in the next section. Thus in
general (4.17) will not be satisfied.

As a further preliminary to the extension of the
perturbation theory developed in the previous section
we recast the equations in matrix form. To this end we
define

Kr=Ki(s;,51,51), 1=0,1,2;

4, k, 1 a cyclic permutation of 1,2,3. (4.18)

K is now to be thought of as a column vector with the
nine components (Ko1,Ko2,Ko3,K11,* - ). With a corre-
sponding notation for 7' (4.14) becomes

Tr=—iNn+3 ZlmIl;KlKKl, (4.19)
K,
where m is the 9X9 matrix
(6 2 2 0 -6 6 0 10 10]
2 6 2 6 0 —6 10 0 10
2 2 6 —6 6 0 10 10 0
o 2 -2 6 -3 -3 0 -5 5
m=i-2 0 2 -3 6 -3 5 0 =5,
2 =2 0 —3 -3 6 —5 5 0
O 2 2 0 3 -3 o6 1 1
2 0 2 —3 0 3 1 6 1
.2 2 0 3 -3 0 1 1 6
(4.20)
and
A= (5,5,5,0,0,0,2,2,2). (4.21)

As in Sec. 3, the unitarity integrals will be denoted
by T'1;0 Kxy; with the composition taking place in the
s; channel. Thus, for example, the “unitarity” equations
(4.1) are, in this notation,

Tn=Kn+3iTno K. (4.22)
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One of the advantages of this formulation is that an
equation originally written down in one channel, such
as (4.19), may immediately be extended to other
channels. Thus (4.19) generalizes to

Tr=—3\1+3 X mrj ik, (4.23)
Kl
and similarly (4.22) becomes
T1;=K1i+%iT1;0 Ky (4.24)

(the summation convention is not used). Inserting
(4.23) into (4.24) now gives the desired nonlinear
integral equation involving only the K amplitude:

— 3\ +3 2 m K ko= K1~ i 0 K1
Kl
+il Z m;,-;KlKKlOKU. (425)
Kl

Assuming that a power-series expansion in \ exists,

Krj=2 NKr;™,

n=1

(4.26)
we insert it into (4.25) and extract the coefficients of \
and \* (n>2):

=3\ t3 Z mrj KW =K@,

Kl

(4.27a)
% Z ﬂl[j;KlI{Kl(") =K[j<”)—i*i7\[]‘ o K[j("_l)
Kl

+h ¥

Kl,pt+g=n

mrj, kil ki P K ;9.

(4.27b)

These equations (4.27) may be solved successively to
obtain Kr;( for any finite #. To this end we define
the matrix
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where we have defined
fzj(”)=7\1j OKU(") , (4.30a)
grri™= 2 Kr® oKy, (4.30b)

pte=n

To solve Egs. (4.29) we have only to invert the matrix
b, obtaining

K;i0=6% dijxihes, (4.31a)
K1
K ™=—=3i% drjxif "
Kl
+3i X dijkimkyrgrsi ™, (4.31b)
KiRs
where ‘
0 2 2 0—-6 6 0 10 10
2 0 2 6 0-—6 10 0 10
2 2 0—-6 6 0 10 10 O
11 0 2-2 0-3-3 0-5 5
d=btl=—|—-2 0 2 -3 0-3 5 0-=5].
7] 2-2 0-3-3 0-5 5 0
o 2 2 0 3-3 0 1 1
2 0 2-3 0 3 1 0 1
2 2 0 3-3 0 1 1 0
(4.32)

It follows immediately from (4.31a) that the first-order
term is given by

K[j(l) = 5\[1' y (4:.33)

and it is a straightforward but lengthy task to use this
in (4.30) and (4.31b) to obtain Kr;® and the higher-
order terms successively. We shall quote only the re-
sults for the first three orders here. In conventional
notation one obtains, in second order,

157
b=12(Gm—=1), (4.28) Ko® (s ) =—[F (400)+F ()], (4.340)
where I is the 9X9 unit matrix. Then, by (4.27) and 4
(4.28), Smi
1{1(2) (s,t,u) =*“‘[F (t,to)“F(%,%o)] y (4341))
> bri kK =645, (4.292) 4
K1
. ) i
2 bri K g™ = —3ifr; " +30 3 mrj kg™, K® (s,tu) =TEF(U0)+F(%,%)]; (4.34¢c)
K1 Kl
(4.29b)  and in third order,
5572
Ko® (st,u)=— > {F (t10)[F (1,80)+4F @ (110) T+ (1> u)} (4.35a)
_ 357? 8
Ki® (s,t,u)=— > “:F(t,to)-l-;F(‘” (t,to):lﬁ(t,zo)~ (te u)} , (4.35b)
4372 112
R st) == P00 Pt +—F 0 [ (4350

The function F©® was defined in (3.9), and #y= o= so.
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In order to complete our program for this section, as
outlined at the end of Sec. 3, we have now to sum the
terms in the subset of the perturbation expansion which
consist of the cross-channel chain diagrams (see Fig. 7).
This is not quite as easy here as it was in the isoscalar
case since what was previously a simple geometric
progression now splits into two such progressions. To
show this and to identify the coefficients, we try writing
the nth-order K amplitude in the chain approximation
in the form

K (5,0)= b L@ )1+ (— 1P )],

n>2, (4.36)

where the 4™ are constants to be determined and the
dependence of F on the subtraction point has been
temporarily left out.

Now application of (4.19) yields the nth-order scat-
tering amplitudes

To™ (5,0) = { (219 -6 M+ 1085 ™) (F (5) )
+ (45t — 3k (W 4 Shy ™)
XLE O+ EF @)1},
T1 (s,t0) =25 (= 2k ™ 4Ok, (W 4-5hp (M)
XLEG) = (F ()],
T (5,8,0) = 15 { (419 — 60 W 2y ™) (F (5) )
+ (270 +3h1 ™ +Thy™)
XLE D)+ F )1} -
Noticing that the coefficient of (F(£))** must be the

same in K;™ as in T7(™ gives one relation between
the k(™

(4.37)

o™ -3k, W — 5l (W =0, (4.38a)

while the observation that the coefficient of (F(s))*!
in Tr™ must be

Az (Girhp) !
yields two more relations
L (o™ 431y W45k ) =5(257/4)"L,
E(2ho™ — 3R W 4Ry ™) =2 (4m/2)" 1.

(4.38b)
(4.38¢)

These three equations (4.38) have as their solution

ot = (5/3)[ (157/4)—+2(im/2)™1],  (4.3%)
b = (5/3)[(i57/4)»1— (ix/2)*1],  (4.39b)
b =4[5 (i5m/4) =1 (i/2) "], (4.39¢)

The chains in each isospin channel are now simple to
sum:

Ko(stu)=(5/3)N\a " ()+2871(1)]

+(te> u)—5\, (4.40a)
Ki(s,t)= (5/3)\[e () =B () ]— (te> ),  (4.40b)
Ky(s,tu) =N\[51(O)+B1 () H (> u)—2\, (4.40c)
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where
a(f)=1— (STN/DF (i,t0) , (4.41a)
and
B(D)=1—%ix\F (i,t) . (4.41b)

5. DETERMINATION OF THE PARAMETERS

We wish to use the expressions (4.40), obtained in the
chain approximation, for the K amplitude and to obtain
from it the scattering partial waves according to
(2.4). Since the scattering amplitude obtained in this
way will not, of course, satisfy exact crossing symmetry
(since we have had to make approximations in solving
the original equations) it is reasonable to attempt to
determine the two parameters (so and \) in such a way
as to minimize the violation of crossing symmetry. One
might imagine doing this in either of two ways. One
possibility would be to work entirely within the frame-
work of the model defined by Eqs. (4.40) and (2.4),
making no further reference to the two-particle cut
structure equations (4.9). In this case one would simply
try to minimize the violation of the crossing relations
(4.4) (or of the partial-wave approximation to these
equations). An alternative approach would be to at-
tempt to choose the parameters in the approximate
solution (4.40) in such a way as to make the original
equations of the model as well satisfied as possible;
that is, to match the amplitude calculated from (4.40)
and (2.4) with that obtained by using (4.40) and (4.14).

To make the best use of either of these methods
would involve minimizing some ‘‘crossing function,”
computed as an average over some region of the s-f
plane, with respect to the parameters. Such a procedure
has been described by Blankenbecler ef al.'! and, of
course, requires the use of a computer. The results of
such a calculation cannot be expected to be entirely
unambiguous, however.!? It is quite likely that more
than one minimum would be obtained, and a choice
would then have to be made on the basis of the relative
sharpness and/or deepness of the various minima. Even
then it might prove necessary to make use of some of
the known experimental features of the m-m system,
such as the position or at least the existence of the p
meson, since we can hardly expect that inclusion of the
elastic-scattering channels only is sufficient to com-
pletely determine matters. Indeed, it has generally been
found necessary in previous calculations to include
something of inelastic effects if the p was to come out
of the calculation at all. While inelastic effects have not
been explicitly taken into account in our model it is
nevertheless the case that the £ (s) become complex
at sufficiently high energies, thereby violating the
elastic unitarity condition on the ;% (s). This will be
discussed in more detail in the next section. To return
to the object of the present discussion, since there are

1R, Blankenbecler, J. J. Brehm, L. F. Cook, and R. E. Kreps,
Phys. Rev. 133, B1526 (1964).
2 R, E. Kreps, Phys. Rev. 141, 1380 (1966).
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only two parameters in the present model it is possible
to form a rough idea of its capabilities without resorting
to a machine calculation. It is this preliminary investi-
gation which is described in the present paper.

Since the description of resonances will evidently
form a vital part of the discussion we must first develop
the resonance position and width formulas in the
modified K-matrix formalism. It follows from (1.2c)
and (2.4) that the phase shifts are given by

p(s) 3
) G
@&/m)[kr® () I+ R(s)—n
where u=—iG(so) and R(s) is defined in (2.3). Thus
the phase shift will be %7 (d&#nw) at values s, of s such
that
kr® (s;)= (4/m)[u—R(s,) ™.

The condition that this be a true resonance (phase
shift increasing through $7) may be derived by writing
the amplitude in the neighborhood of s, in the form

8 (s)= tan‘l(
(5.2)

41 A
a1 (s) ==~ ———
T p Sp—S—1A

)

(5.3)
kr®p p

A= = ,
(=R W' — kRt (u—R)%h ' — R’

where the primes denote differentiation with respect to
s and all functions in (5.3) are evaluated at s,. The
second equality in (5.3) is a result of using the resonance
condition (5.2). Thus, for A>0, there will be a true
resonance mass 1/, with width

I=A/\/s:,

in units of the pion mass. Since R’(s)>0 for all s above
threshold we see by (5.3) that a necessary condition
for resonance is

kI(l)’(Sr)>0.

We may now inquire whether a p-wave resonance is
possible for any choice of the parameters, given the
I=1 K amplitude (4.40b). It is convenient to use

StA/2
ap=0a(0)= 1+-—;—-<-—-—p>

™

as a parameter instead of s,. Now inspection reveals
that the only region of the (ao,\) plane which is capable
of describing a p-wave resonance (except for very large
values of \, say || >1, which we reject as inconsistent
with our neglect of all but the chain diagrams) is
(oS —0.1,Ax>0). The position of the resonance will
be (very roughly) about that of the p (750 MeV) for
points near the line ap+2N=0.05. The parameters
giving the experimental mass and generally accepted
width (120 MeV) are (ap\)=(—0.61,0.27). As is
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customary the width is found to be much more sensitive
to variations of the parameters than is the position.

The actual procedure we have used for approximately
locating a point of minimum crossing violation will now
be described. The parameter search was begun in the
neighborhood of the p; the possibility of relaxing this is
discussed later. In keeping with what we have said
earlier about the aims of the present work the crossing
conditions will only be applied at a single point in the
s-t plane, the symmetry point ($,5), although a few
remarks will be made about the qualitative behavior
away from that point.

One relation between the parameters will be obtained
by simply requiring the amplitude obtained from (2.4)
to satisfy crossing at the symmetry point. At this
point (4.4) requires To=2.5T", which, when expanded
into partial waves, becomes

30® () —2.500® (§)+ - -
—2.5[0:® (§) —2.50,® )+ -],

This equation defines a curve in the resonance region
of the parameter space, part of which is shown in
Fig. 8.

In solving (5.4) to obtain this curve the partial-wave
expansion was terminated at the d waves, their con-
tribution being only about 5%, that of the s waves. The
position of the p is indicated by the heavy dot in Fig. 8;
its distance from the Ty=3T; curve only appears large
because only a small section of the (ao,\) plane is shown
in the figure. If the experimental p mass is used to
eliminate the remaining degree of freedom, by varying
along the curve in Fig. 8 until a resonance mass of 750
MeV is “predicted” [by using (5.2)], the parameters
found are (—0.54,0.24), with a resulting predicted
width of about 180 MeV. This is close to one recent
experimental determination’® (170 MeV) but is above
the generally accepted range of 100-140 MeV.

It was our original intention to use the derivative
crossing conditions on the partial amplitudes, as derived
by Chew and Mandelstam," to make the final choice of
parameters. However, the derivative conditions were
found to be so sensitive to higher partial waves that
this method was rejected as unsuitable for hand calcula-
tion. It should be pointed out here that not only are
there convergence difficulties but also the partial-wave

(5.4)

%o
22 .26 .30 A

P

-.581

Fic. 8. Curve on which To(%,%)
=3T2(%,%). The p parameters are
(—0.61,0.27); the apparent dis-
tance from this point (heavy dot
in the figure) to the curve is ex-
aggerated by the large scale of this
figure.

-.54

o

-.621

B G, Wolf, Phys. Letters 19, 328 (1965).
(1;6% F. Chew and S. Mandelstam, Nuovo Cimento 19, 752
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To

1.3} To(u)

L2F F16. 9. A plot show-

ing how the discrepancy
To — T4 considered
as a function of A, is
minimized for A=0.22.

projection integrals have to be evaluated numerically
and the errors in this increase with / because of the
increased oscillatory behavior of the integrands. This
does not mean that the derivative conditions were
badly violated but rather that, since the deviations
were in fact rather small, it was not possible to select
a particular pair of parameters by this method with
any degree of confidence. A similar situation prevailed
when we attempted to use crossing relations at points
away from the symmetry point. This approach would
presumably be feasible on a computer but for the pur-
poses of the present investigation we can make use of
the alternative method, mentioned at the beginning of
this section, in which (4.14) is employed. Since we wish
to place more weight on the “internal” condition (5.4)
than on the second condition the following procedure is
adopted: We search along the curve of Fig. 8 for a
minimum deviation of T'(4,4,4), as calculated in (5.4),
with the T9(4,%,%) obtained from (4.14). The latter
amplitude is given by

To© (%,%,5)=—(5/2)M-(5/6)Ko(%,5,5)+(5/3) Ka(5,%,5
= — 100 (25/3)\a ($)+(20/3)\671 (%) ,
(5.5)

where the superscript ¢ reminds us that this amplitude
has been obtained from the crossing-symmetric equa-
tion (4.14). A plot of 70 (%,%,%), as (ao,\) are varied
along the curve in Fig. 8, is shown in Fig. 9 together
with 79 (u for unitary), calculated as in (5.4).

The discrepancy between these two functions will
evidently be minimized in the neighborhood of (ao,\)
= (—0.54, 0.22). Note that the same result would have
been obtained by using the =2 amplitude T, since
any amplitude computed from (4.14) automatically
satisfies crossing. These parameters (—0.54, 0.22) imply
a p-wave resonance at

s=33m?=(5.75m)?= (805 MeV)?

with width T'=~1.8m,=252 MeV. The general features
of the phase-shift behavior in this and other channels
are described in the next section.

The first question which now comes to mind is what
other minima, if any, of the second crossing condition
occur on the curve of Fig. 8. This can only be answered
decisively by an extensive machine search; all we can
say here is that no other points in the resonance region
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of the (ao,\) plane were noticed for which both crossing
conditions were well satisfied. In any case, the above
minimum is certainly the nearest to the experimental
position.

The other main question of interest is that of the
magnitude of the shift in our approximately determined
parameters which will undoubtedly result when crossing
dissatisfaction is minimized over a region of the s-¢
plane rather than at a single point. The behavior of the
slopes of the partial amplitudes (as mentioned earlier)
certainly provides reason for hoping that crossing is
reasonably well satisfied over at least a small region
around the symmetry point, but again this question can
only be properly decided by a machine calculation.

6. RESULTS AND DISCUSSICN

In this section we shall first briefly describe the main
features of the low partial-wave phase shifts (in each
isospin channel) resulting from the choice of parameters
(a0, \) = (—0.54,0.22), as determined in the previous
section. In conclusion a comparison with the known
experimental features of the m-m system will be made
and the relation with the results of some other theo-
retical models is discussed.

The s-wave scattering lengths in the /=0 and I=2
channels, a¢ and @., may be readily found by using
(2.4). One has

art= (4/m [ W= 4/mkO O T,
I=0,2 (6.1)

where the factor 4/7 in the first equality is necessary
to conform to the conventional normalization. With
(cwo,N) = (—0.54, 0.22), (6.1) gives

ao=—0.67, ay=—0.30.

Scattering lengths for the higher partial waves are also
frequently defined by
T ar®(s)

arP=-41im .
4 4 (s—4)!

(6.2)

These will, of course, only be finite in a model in which
the partial waves have the correct threshold behavior.
That such is the case in our model follows automatically
from the fact that the full K matrix (4.40) has the
correct singularity structure at the cross channel (¢ and
u) normal thresholds. Evaluating (6.2) gives, for I=1
and 2,

e ®=0.013, @®=0.012, @,®=0.002.

The low-energy behavior of the I=0 s-wave phase
shift §o(@ (s) is illustrated in Fig. 10.

We have not continued the plot to high energies
because of the complication resulting from the presence
of a pole in our approximate K-matrix elements (4.40).
The function «(¢) has a zero at about {= —45 resulting
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b phase shift 50©.
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in a branch point in all the k¥ (s) at about s=350
(1000 MeV). Since the large residue of the pole in Kr
results in the imaginary part of k¥ dominating the
real part (until very high energies are reached) the
violation of elastic unitarity in fact remains small well
beyond this additional branch point. It will be seen
that no resonances occur in this channel (at least in
the region of real phase shifts), although there will be a
broad bump in the cross section as the phase shift
decreases through —34w at 440 MeV. This bump may
perhaps be connected with the ABC anomaly's and/or
the suggested scalar meson ¢,'¢ which, if it exists, is
expected to have a fairly large width.'”

Turning now to the d wave in this isospin channel,
the phase shift §,® remains between 0 and 7/2 below
the branch point discussed above and so the f° (at
1250 MeV), which after the p is probably the best
established feature of the m-r system, is not found.
Above the branch point the phase shift §® becomes
quite large (possibly even reaching 7/2) at times, but
the results of the model cannot be regarded as significant
in this region. In the I=2 channel, the s wave remains
between 0 and —/2 while the d wave, after starting
out positive, crosses the axis but stays small in
magnitude.

Finally we note the curious feature that, as well as
the p-wave resonance, the model also predicts reso-
nances in each of the higher odd partial waves with
masses successively increasing but limited above by
the position of the pole in K (about 1000 MeV). It
seems unlikely that these higher resonances should be
taken very seriously since they only arise as a result of
the pole in K; and this pole cannot be present in the
“true” K,. However, even if this pole is smoothed out
by something not included in the present model one
might possibly expect to see the spin-3 resonance (as-
suming of course that our K does in fact provide a
reasonable description of the “origins” of the p).

It is notoriously difficult to compare the predictions
of a mr scattering model with experimental results
since the latter, with the exception of the two established
resonances, are in a continual state of flux. It is true

15 A, Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 5, 258 (1960).
(1166}) Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 130, 2481

963).

17 C. Lovelace, R. M. Heinz, and A. Donnachie, CERN Report,
1966 (unpublished).
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that the majority of experimental (and a few theo-
retical) papers over the past few years have favored
positive s-wave scattering lengths, but the evidence is
as yet far from conclusive. As an indication of the
probable magnitude of ¢ we may quote one of the most
recent analyses'’ in which the data were found to be
consistent with ao==-1.1. Several groups'® have found
evidence for a scalar (I=1I=0) resonance, the ¢, at
about the mass of the p, although it has not shown up
in all experiments.!® There has also been some recent
support!? for the other scalar resonance, o. If either of
these scalar resonances exist the phase shift 8, would
have to be increasing through = at the resonance mass,
in contradiction to the behavior we find. The lack of a
resonance-generating centrifugal barrier makes it very
difficult for a - model to generate s-wave resonances
unless other channels in which the particle could occur
as a bound state are included. On the other hand, if the
bumps in the cross section turn out to be explicable on
some other nonresonant basis (such as 8 decreasing
through ), then Cook’s conjecture’® may be tenable.
This is a proposal that §® (s) may decrease from 27
at threshold to 0 at infinity. On passing through = and
37 broad bumps in the cross section would be produced
which could conceivably correspond to those observed
(the ¢ and ¢%). The low-energy behavior of our §(? is
consistent with this explanation of the bump at the o
mass but not for the one at the p mass.

The simplest way of comparing our results with
those of most other calculations?*2 is by determining
an effective Chew-Mandelstam™ coupling constant de-
fined by

4
—=Aem.= %TO (%:%)%) = %Tz(%,%,%) .
™

From Fig. 9 it may be seen that in the neighborhood of
A=0.22 the existence of the second parameter so has
the approximate effect of simply reversing the sign of A.
Then, when account has been taken of the normaliza-
tion factor 1w, we find

)\c.m.= 18.

It seems to be a general feature of all these models that
they agree on low-energy behavior for a given value of
Ao.m.. Thus, for example, the scattering lengths obtained
by Saperstein and Uretsky?* (using fourth-order per-
turbation theory for the discontinuity on the left-hand

18V. Hagopian, W. Selove, J. Alitti, J. P. Baton, and M.
Neveu-Rene, Phys. Rev. 145, 1128 (1966) ; C. Kacser, P. Singer,
and T. N. Truong, ibid. 137, B1605 (1965).

B L. F. Cook, Phys. Rev. Letters 17, 212 (1966). See also G. F.
Chew, ibid. 16, 60 (1966).

2 K. Kang, Phys. Rev. 139, B126 (1965).

( “61;). M. Saperstein and J. L. Uretsky, Phys. Rev. 140, B359
1965).

22 M. Alexanian and M. Wellner, Phys. Rev. 137, B155 (1965).

2 J. W. Moffat, Phys. Rev. 121, 926 (1961); B. H. Bransden
and J. W. Moffat, Phys. Rev. Letters 8, 145 (1962).
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(b)

F1e. 11. (a) The “bubble” graph. The combination of on-shell
internal lines and modified phase-space factor leads to the usual
Feynman amplitude for graphs of this form. (b) A non-chain-type
graph, which is not converted to a Feynman diagram by using the
modified phase-space factor. This graph occurs in the third order
of the power-series expansion in X of K (s,f) and possesses a singu-
larity at ¢=0.

cut) for Ae.m,=0.18 are
ao= —063, Ay= —'032, dl(l) =0.08,

the first two of which are quite similar to ours. They
also find, for this value of A\em., a p-wave resonance
about five times broader than the p. This resonance
occurs at the p mass by taking Ae.wm.==0.2 in their
model. Alexanian and Wellner?? found that to reproduce
the experimental p required Ae.m,=0.24, Their scattering
lengths are

ao=—0.78, ay=—044, ¢,0=0.03,

and the resonance width was determined by them to be
100 MeV. These authors were using a pure A¢* model
for the coupling but with an improved convergence
scheme.

On the other hand it has generally been found in
calculations based on dispersion relations that a nega-
tive Ae.m. 1S necessary to obtain a p-wave resonance.
Thus, for example, Moffat et al.,® whose calculations
are based on dispersion relations for the inverse partial-
wave amplitudes, found a solution with a p-wave reso-
nance at 700 MeV for . =—0.1.

The only other calculation known to the author in
which all parameters are determined (also by crossing
requirements) is that of Blankenbecler et al.* The N/D
formulation of the partial-wave dispersion relations was
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used in a form which guaranteed that the full partial-
wave sum exhibited the correct singularity structure in
the crossed channels; inelastic effects due to the 7w
and p-p channels were also included in an approximate
way. They found a p-wave resonance at 810 MeV with
width 350 MeV. Their scattering lengths also turned
out to be negative,

ay=—1.72, a,=-—1.85.

The two (related) features of partial-wave dispersion-
relations calculations (see, for example, Kang?® and
references contained therein) which have caused most
difficulty are the problems of forcing the correct thresh-
old behavior in the individual partial waves and also,
of course, the convergence difficulties encountered when
dealing with integrals over an infinite energy range.
These difficulties are both absent in the present work,
where the unitarity-like integrals are over finite energy
intervals.

While this work has been based on a purely S-matrix
theory approach to the strong interaction problem the
results obtained by the method of solution adopted
here have a certain similarity to the A\¢* model for ==
interactions;in fact the two coincide in first- and second-
order perturbation theory (for so=4). This is essen-
tially due to the use of the modified “phase-space”
factor F which effectively converts the simple bubble
graph [Fig. 11(a)] with on-mass-shell intermediate
lines to one with off-mass-shell intermediate lines. This
relationship does not follow for the terms occurring in
higher order which are not simply composed of a chain
of bubbles, as in Fig. 11(b). Itis the graph in Fig. 11(b),
incidentally, which contributes the function F© con-
taining the unwanted singularity at =0, as discussed
in Sec. 3.

ACKNOWLEDGMENTS

T am very grateful to Dr. P. V. Landshoff for suggest-
ing this problem and for continued help and encourage-
ment. I also wish to thank the Shell Oil Company of
Canada for a scholarship.



